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Abstract

“The Olympic Games are a platform for nations to showcase their
strength, unity, and the human spirit, transcending politics and dif-
ferences,” said Thomas Bach. Undoubtedly, medals and effective
Olympic strategies are crucial for nations. Can the final medal counts
be predicted? To effectively address this question and offer valuable
guidance for national Olympic committees, we present the following
insights.

For Task 1, it is requisite to establish a model to predict the medal
counts for each country in the Los Angeles, USA summer Olympics
in 2028, while also exploring the impact of specific events on a na-
tion’s total medal count. We propose an improved Random Forest
Model that includes both training and test datasets, which reflects a
country’s medal count based on the performance of its athletes. We
calculated the correlation coefficients to identify several features highly
correlated with medal counts. Additionally, we account for changes in
the athletes’ composition by classifying them as Continuing Athletes
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and New Athletes, which facilitates a more accurate reflection of in-
dividual medal performance, thereby making the features fed into the
Random Forest Model more precise. We finally use a table to provide
visual representation of the 2028 medal table, and the list of countries
with their first-time medalists is presented. Furthermore, we identify
several key events where countries have a significant advantage, and
calculate their impact in that table.

For Task 2, we need to explore the ”great coach” effect on a coun-
try’s medal count and determine whether certain countries should pri-
oritize the development of specific sports. Owing to the free movement
of coaches, a Difference-in-Differences (DID) model was constructed to
explain the effect of great coaches, using the coaching careers of Lang
Ping, Béla Károlyi, and Jon Urbanchek as key examples. The re-
gression results indicate that the arrival of a great coach significantly
increases the likelihood of a team winning between 0.5 to 1.5 addi-
tional medal tiers, while the departure of a great coach significantly
reduces the team’s chances of winning medals.

For Task 3, it requires us to find and explain the unique and in-
sightful perspectives proposed by the model. Based on the results of
the previous questions, a significant host-country effect was found, and
we further explored it. We still used the Random Forest Model and
filtered the data from 1960 onwards. The data were divided into two
datasets for model training: one with 𝐻𝑜𝑠𝑡𝑐,𝑦 = 1 and the other with
𝐻𝑜𝑠𝑡𝑐,𝑦 = 0. We also put forward some effective perspectives, such as
attaching importance to first-time participation and emphasizing the
continuation of historical medals.

After that, in order to test our model, we compared our Random
Forest Model with the traditional Ordered Logistic Regression Model
with the same dataset. The outcomes indicate that our model exhibits
a high level of robustness.

Keywords: Random Forest Model, Difference-in-Differences, Medal
Prediction, Great Coach, Host Effect

1 Introduction

1.1 Background

In recent years, the Olympic medal table has become a focal point of global
attention. The performances of traditional sporting powerhouses such as the
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United States, China, and Australia, in particular, have drawn significant
interest. However, the achievements of athletes from other nations on the
Olympic stage should not be overlooked, as their results often become topics
of lively discussion.

Medal prediction projects are commonplace, yet these analyses typically
focus on individual athlete data, such as past performance in their respective
disciplines and their current form. However, a country’s total medal count at
the Olympics is influenced by a broader set of factors. Beyond the abilities
of individual athletes, hosting the Games is a critical determinant, as host
nations often leverage the home-field advantage to achieve better results.
Additionally, the “great coach” effect cannot be underestimated; the pres-
ence of renowned coaches can significantly enhance the performance of entire
teams. National policies and public opinion supporting sports also play a
pivotal role, particularly in specific disciplines, thereby indirectly affecting
the overall medal tally.

Medal counts serve not only as a key metric of a nation’s athlete training
level but also as a tangible reflection of its sportsmanship. Thus, accurately
predicting and analyzing medal trends holds considerable importance. By
delving into these influencing factors, we can better understand the current
state and future trajectory of sports development in various countries. Such
insights also offer valuable guidance for formulating more effective sports
development strategies. This not only enhances a nation’s competitiveness
in international sporting events but also promotes public health through
increased participation in sports, fosters enthusiasm for physical activity,
and facilitates the widespread dissemination of sports culture.

1.2 Restatement of the Problem

In light of the background information and constraints highlighted in the
problem statement, we need to tackle the following tasks:

1. Based on athletes’ historical data, establish a mathematical model for
medal allocation for each country and conduct an accuracy test to
evaluate the predictive power of the model. Use the calibrated model
to predict the medal standings for the 2028 Los Angeles Olympics in the
United States. Compare the number of medals from the 2028 Olympics
with those from 2024 to determine whether countries have achieved
breakthroughs or experienced declines in performance. Additionally,
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for countries that have never won a medal, predict the total number of
medals they might win in 2028 and the probability of achieving this.

2. The model analyzes the impact of the “great coach” factor on the dis-
tribution of Olympic medals. It selects three countries to evaluate the
potential medal enhancement effects that could result from introducing
elite coaches in specific sports.

3. Evaluate the strengths and areas for improvement of the model, and
assess its overall performance.

1.3 Work Flow

Our approach consists of four modules: constructing two core models to
address the issue and comparing their results with the OLR model to validate
the model’s performance and plausibility, whcih is conducted as Figure 1
shows.
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Figure 1: Workflow of the Model

2 Preparations of the Models

2.1 Assumptions and Explanations

• Assume that the athletes’ performance does not deviate significantly
from the predicted values, and that exceptional outcomes, such as “up-
sets,” are not considered.
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Explanations: In most cases, athletes demonstrate consistent perfor-
mance, with relevant data being relatively concentrated, making it a
reliable reference for predictions.

• It is assumed that there are no sharp fluctuations in the number of
athletes sent by each country, i.e., the number of athletes will not ex-
perience significant increases or decreases.
Explanations: This assumption ensures that the model remains sta-
ble and avoids large-scale disruptions in the number of athletes, which
could otherwise lead to skewed results

• It is assumed that environmental factors, such as weather and venue
conditions, do not have a significant impact on athletes’ performance.
Explanations: While environmental factors can influence competition
outcomes, these factors are not included in the model due to limitations
in available data.

• It is assumed that historical data provides stable predictive power for
future performance.
Explanations: In most cases, athletes’ performances are influenced
by their training and past experiences. Therefore, historical data is
considered to be a stable predictor of future competition outcomes.

2.2 Notations

2.3 Data Pre-processing

• The attached data includes detailed information on all Olympic Games
in history, such as medal distributions, hosting details, event informa-
tion, and comprehensive data on participating athletes, which includes
their years of participation, countries, events, and the types of medals
they won. We merged and cleaned the data.

• We converted textual data into numerical form. For instance, medal
achievements are represented by values from 0 to 3, and other awards
are also numerically coded.

• We identified the years when “outstanding coaches” appeared in the
dataset for further analysis, facilitating breakpoint regressions at those
points.
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Table 1: Summary of Key Indicators and Their Explanations

Indicators Explanations

𝑖 The athlete 𝑖

𝑐(𝑖) The country 𝑐 of the athlete 𝑖

𝑃𝑖 The probability of athlete 𝑖 winning a medal

𝐼 (𝑃𝑖) Whether the athlete 𝑖 winning a medal

𝜏+ The probability threshold for winning a medal

𝑟 The correlation coefficients of different features

𝑀𝑒𝑑𝑎𝑙 The rank of the medals

𝐶𝐴𝑅 Continuing athletes rate

𝑁𝐴𝑅 New athletes rate

𝐴𝑃𝐸𝑖,𝑦 The individual features of athlete 𝑖 in year 𝑦

𝐶𝐸𝑐,𝑦 The country-level features of country 𝑐 belongs in year 𝑦

𝑦𝑒𝑎𝑟− A set of years the Olympic Games held before 𝑦𝑒𝑎𝑟

3 Model Overview

3.1 Improved Random Forest Model

Random Forest is an machine learning algorithm that makes classification or
regression predictions by taking the majority vote or average of the results
from multiple decision trees1. A Random Forest Model has been established
for Olympic medal predictions, which extends the classic forests developed
by Breiman2and Wager and Athey3.

The partitioning method prevents data leakage by properly partitioning
the training data and has the following advantages:

1. It allows for the prediction of future data based on historical training
data.

2. During model training, different countries are separated to avoid data
mixing, which may cause bias in the results.
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3. By incorporating additional variables, it helps to distinguish between
different sports or events.

We have organized the flowchart of the model as Figure 2.

Athlete
Simulator 

     Train Data Set
     Historical Records

     Featuresyear-

     Test Data Set
     Featuresyear

Generate

Key Model

Random Forest

Test

Input     Original Data

Error<Expect Yes

No

Split
By year

year = Year

year < Year
Future

OlympicsPredict

     Historical Athlete Data NAR
CAR

Figure 2: Workflow of Random Forest Model

3.2 Difference-in-Differences Model

Difference-in-Differences (DID) is a widely used quasi-experimental research
method for identifying causal effects by comparing changes in outcomes be-
tween treatment and control groups before and after an intervention. The key
assumption of this method is the “parallel trends assumption,” which states
that, in the absence of the intervention, the treatment and control groups
would follow similar trends over time. Given the context of this study, where
the athletes participating in the competition are largely stable over a short
period, but the coach may change, DID provides a viable approach to eval-
uate the “great coach” effect. By examining the differences between the two
groups across different time periods, DID effectively accounts for pre-existing
disparities between groups as well as macro-level or time-specific factors in-
fluencing both groups, leading to more robust causal estimates.

In this study, to address the second research question, we apply the DID
method to compare the outcome differences between groups influenced by
“great coaches” and those without such influence, focusing on changes be-
fore and after the intervention. First, we calculate the outcome gap between
the two groups prior to the intervention. Then, we measure the gap after the
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intervention. By subtracting the pre-intervention difference from the post-
intervention difference, we isolate external time trends and group-invariant
factors, allowing us to estimate the net impact of “great coaches.” Based on
these findings, corresponding strategies and recommendations can be pro-
posed to inform policy formulation and management practices.

3.3 Ordered Logit Regression Model

Ordered Logit Regression (OLR) is a statistical technique designed for situa-
tions where the dependent variable is ordinal, meaning its categories follow a
natural order but the distances between categories are not necessarily equal.
This method assumes the existence of an unobserved latent variable 𝑦∗ that
represents the underlying propensity or tendency associated with the out-
come. The observed variable y is derived from 𝑦∗ through thresholds that
partition the latent variable into ordered categories4.

The primary goal of OLR is to estimate the regression coefficients that ex-
plain the relationship between the independent variables and the latent vari-
able 𝑦∗. By incorporating the cumulative distribution function (CDF), the
model computes cumulative probabilities for each category, which represent
the likelihood that an observation falls within or below a specific category.
This approach ensures that the ordinal nature of the dependent variable is
preserved while capturing the influence of predictor variables5.

OLR is widely used in fields such as social sciences, economics, and
medicine, where ordinal outcomes frequently arise—for instance, levels of
customer satisfaction, disease severity, or educational attainment. By mod-
eling the cumulative probabilities, OLR provides a nuanced understanding of
how changes in independent variables affect the likelihood of an outcome oc-
curring in higher or lower categories, making it a powerful tool for analyzing
ordered data6.

4 Model Building and Processing

4.1 Prediction Model Based on RF

4.1.1 Correlation and Feature Selection

The logistic correlation coefficient is a metric based on the logistic regression
model, designed to evaluate the relationship between predicted probabili-
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ties and actual classifications. The regression coefficients further quantify
the marginal impact of each independent variable on the dependent vari-
able, elucidating their contribution to the classification outcomes in terms of
magnitude and direction.

As a preliminary step, the Pearson correlation coefficient between two
datasets is calculated7. The formula for the Pearson correlation coefficient r
is:

𝑟 =

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋) (𝑌𝑖 − 𝑌 )√︁∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
√︁∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2
(1)

Where 𝑋𝑖 and 𝑌𝑖 represent the values of the i -th sample point for the
variables X and Y , respectively. 𝑋 and 𝑌 denote the sample means of the
variables X and Y , respectively.

Additionally, the value of r ranges from [-1, 1].
Finally, a correlation coefficient matrix between multiple variables is gen-

erated, which is then transformed to obtain the Logit correlation coefficient
matrix.

The Logit transformation is calculated using the following formula:

𝑙𝑜𝑔𝑖𝑡 (𝑟) = log

(
1 + 𝑟

1 − 𝑟

)
(2)

Here,r represents the Pearson correlation coefficient.
Based on the results of the correlation coefficients8, a Logit correlation

heatmap is generated. The heatmap’s horizontal axis represents the depen-
dent variables, specifically whether a certain medal is achieved, while the
vertical axis showcases the individual features of the athletes. Darker shades
of the squares indicate stronger correlations.

It was observed that the variable “Gender” has an insignificant impact
on medal types. Therefore, this variable will not be considered in subsequent
research. Variables such as “Host” will be used as features for the Random
Forest prediction in the following tasks.

4.1.2 Some Parameters and Formulas

To more clearly analyze the impact of age on Olympic athletes’ retirement
and the transition between veteran and new athletes, we categorize the ath-
letes for each Olympic Games into two groups: Continuing Athletes and
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Figure 3: Logit Correlation Coefficient Heatmap for Medal Prize Distribution

New Athletes. This classification method helps to more accurately predict
the potential contribution of athletes to the country’s total medal count.

Let 𝐴𝑦1 denote the set of athletes participating in the Olympic Games in
the 𝑦1 - th year, 𝐴𝑦2 denote the set of athletes participating in the Olympic
Games in the 𝑦2 - th year, 𝑈 denote the universal set of all possible athletes,
and 𝑁𝑦1 denote the total number of athletes participating in the Olympic
Games in the 𝑦1 - th year. The number of continuing - participating athletes:

𝐶 = |𝐴𝑦1 ∩ 𝐴𝑦2 | (3)

New athletes are those who participate in the 𝑦2 − 𝑡ℎ year but not in the
𝑦1 - th year. The number of new athletes:

𝑁 = |𝐴𝑦2 ∩ 𝐴𝑦1 | (4)

The proportion of continuing - participating athletes:

𝐶𝐴𝑅 =

{
𝐶
𝑁𝑦1

, 𝑁𝑦1 ≠ 0

0, 𝑁𝑦1 = 0
(5)
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Figure 4: Change in Rate of Athletes in Adjacent Olympic Games

The proportion of new athletes:

𝑁𝐴𝑅 =

{
𝑁
𝑁𝑦1

, 𝑁𝑦1 ≠ 0

0, 𝑁𝑦1 = 0
(6)

The average proportion of veteran athletes 𝐶𝐴𝑅 When considering 𝑛 − 1
groups of adjacent Olympic Games (since we are comparing adjacent two -
year periods, there are 𝑛 − 1 groups), the formula for calculating the average
proportion of veteran athletes 𝐶𝐴𝑅 is:

𝐶𝐴𝑅 =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

𝐶𝐴𝑅𝑖,𝑖+1 =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

|𝐴𝑦𝑖 ∩ 𝐴𝑦𝑖+1 |
|𝐴𝑦𝑖 |

(7)

The average proportion of new athletes 𝑁𝐴𝑅 Similarly, the formula for cal-
culating the average proportion of new athletes 𝑁𝐴𝑅 is:

𝑁𝐴𝑅 =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

𝑁𝐴𝑅𝑖,𝑖+1 =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

|𝐴𝑦𝑖+1 \ 𝐴𝑦𝑖 |
|𝐴𝑦𝑖 |

(8)

According to the formula above,we calculate that the Continuing Athletes
Rate (CAR) is 25%, while the New Athletes Rate(NAR) is 85%. Based on
the initial assumptions and comparisons with the correlation coefficients, an
athlete’s medal performance is determined by a set of features. To simulate
the sample size of athletes participating in the 2028 Olympics, we proceed
with random resampling through the following steps:
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• 100x is defined as the total number of athletes participating in the last
Olympic Games, and 𝐶𝐴𝑅 · 𝑥 athletes are randomly selected from 100x
individuals to form a continuous sample of athletes.100x represents the
number of athletes who participated in the previous Olympic Games.

• The remaining 85x individuals are randomly assigned as the sample of
New Athletes.

• The two samples are combined to form the total sample set of 𝐶𝐴𝑅 ·
𝑥 + 𝑁𝐴𝑅 · 𝑥.

Randomly Select

Continuing Athletes

New Athletes

combine

Figure 5: Workflow of Athlete Sampling

This method allows us to simulate the expected composition of athletes
for the 2028 Olympics.

To improve the realism and accuracy of the simulation, we introduce the
following constraints during the sampling process:

Participation Experience Control: Based on whether an athlete is
participating in the Olympics for the first time, it will determine whether
they can be selected as a Continuing Athlete or a New Athlete.

Medal History Impact: Historical data on whether the country has
won medals in a specific event will be used as a reference condition, influenc-
ing the distribution of medal potential among new and veteran athletes.

We conduct n random repeated experiments based on the previous year’s
data. Define

𝑁𝑎𝑡ℎ𝑙𝑒𝑡𝑒𝑠 := 𝐶𝐴𝑅 · 𝑥 + 𝑁𝐴𝑅 · 𝑥 (9)

The final output is an 𝑛 × Leng matrix, where each row represents the
simulation result of a single experiment.and each value indicates the medal
contribution of an athlete. For example, when med=0 , the new combination
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for “value” is an array of size n, with each value being the sum of the sim-
ulation results where med = 0 . This process is similarly applied for other
values of med .

The individual medal outcomes are used as feature values x for input into
the Random Forest Model. Based on the statistical data of athletes’ different
results, we aggregate and generate predictions for the total number of medals
at the national level.

The individual medal outcomes are used as feature values x and are input
into the Random Forest Model to construct multiple decision trees.

𝑃𝑀𝑒𝑑𝑎𝑙
𝑖 = 𝑅𝐹 (𝐴𝑃𝐸𝑖,𝑦𝑒𝑎𝑟− , 𝐴𝐶𝐸𝑐(𝑖),𝑦𝑒𝑎𝑟− ) + 𝐻𝑜𝑠𝑡𝑐(𝑖) + 𝜀𝑖,𝑐(𝑖),𝑦𝑒𝑎𝑟 (10)

𝑦𝑒𝑎𝑟− represents a set of years the Olympic Games held before 𝑦𝑒𝑎𝑟

To calculate the mean of a large number of predicted results, we use:

ˆ𝑀𝑒𝑑𝑎𝑙𝑐(𝑖) =
∑︁
𝑖

𝐼 (𝑃𝑖) (11)

where 𝐼 (𝑃) is a threshold function that determines whether a medal is
obtained based on the probability 𝑃 and a threshold 𝜏+. Specifically,

𝐼 (𝑃) =
{
1, if 𝑃 > 𝜏+,

0, otherwise.
(12)

Based on the output of the RF, the different results for the athletes are
counted and the data is summarized to generate the predicted total number
of medals at the country level.

4.1.3 Model Training

Considering that the size of the training set can influence the accuracy of the
model, an optimal training set size is identified through an analysis of dif-
ferent errors corresponding to various models, where the error is represented
by 𝜀 in formula 10.

To demonstrate that models trained on overly small samples tend to have
significant errors, scatter plots of the sum of errors and the sum of squared
errors are presented in Figure 6, respectively.
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Figure 7: Boxplot of Model Error by Year

However, these do not provide evidence of the effect of larger sample
sizes on errors. Therefore, boxplots were created to observe the distribution
of model errors under different training set sizes, as shown in Figure 7.

Based on these figures, it can be observed that the optimal training
dataset size is approximately 15 cycles9;10. The model is trained using data
from 1960 to 2024. Simultaneously, predictions regarding the number of
participants are also based on data from 1960 onwards.
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4.2 Effect Evaluation Based on DID

4.2.1 Fundamental Principle

The traditional Difference-in-Differences model has been widely applied in
policy evaluation11;12 and has subsequently been employed to assess indi-
vidual effects13. This provides a theoretical foundation for using the DID
approach to evaluate the great coach effect.

We use the coaching experience data of Lang Ping, Béla Károlyi, and
Jon Urbanchek, identified through the IOC Coaches Lifetime Achievement
Awards, to conduct a DID regression analysis on the changes in the results of
related events in different countries. Lang Ping coached the Chinese women’s
volleyball team before moving to the U.S. 2008 and later returned to coach
China again. Béla Károlyi, originally from Romania, became the national
gymnastics coach for the U.S. after his defection. Jon Urbanchek served as
the USA synchronized swimming coach from 1982 to 2005.The parallel trends
assumption allows us to use DID Model to estimate the degree of the “great
coach” effect.

The first dimension reflects the difference over time. As time progresses,
the performance of different athletes or teams may improve. The calculation
formulas is:

Δ𝑇𝑟𝑒𝑎𝑡 = 𝑌𝑇𝑟𝑒𝑎𝑡,𝑃𝑜𝑠𝑡 − 𝑌𝑇𝑟𝑒𝑎𝑡,𝑃𝑟𝑒 (13)

The second dimension represents the difference in coaching effects. Dif-
ferent coaches have varying impacts, with the treatment group representing
teams influenced by the coach and the control group representing teams not
under the coach’s influence. This is calculated as:

Δ𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑌𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑃𝑜𝑠𝑡 − 𝑌𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑃𝑟𝑒 (14)

Therefore, the regression model is as follows:

𝑌𝑖,𝑡 = 𝛽0 + 𝛽1 · 𝑇𝑟𝑒𝑎𝑡𝑖 + 𝛽2 · 𝑃𝑜𝑠𝑡𝑡 + 𝛽3 · (𝑇𝑟𝑒𝑎𝑡𝑖 × 𝑃𝑜𝑠𝑡𝑡) + 𝜖𝑖,𝑡 (15)

In the model, 𝑌𝑖,𝑡 represents the medal performance of athlete 𝑖 in the
Olympics during year 𝑡, 𝑇𝑟𝑒𝑎𝑡𝑖 is a dummy variable indicating whether the
athlete or team is coached by a great coach taking the value of 1 if the athlete
or the team is coached by a great coach and 0 otherwise, and 𝑃𝑜𝑠𝑡𝑡 is a time
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dummy variable, taking the value of 1 for the years after the great coach
began coaching. The term 𝑇𝑟𝑒𝑎𝑡𝑖 × 𝑃𝑜𝑠𝑡𝑡 represents the interaction between
𝑇𝑟𝑒𝑎𝑡𝑖 and 𝑃𝑜𝑠𝑡𝑡 . The coefficient 𝛽3 measures the great coach effect.

4.2.2 Data and Model Test

To analyze the impact of outstanding coaches on national performance, we
first focus on Lang Ping using the Olympic medal data of the Chinese
women’s volleyball team during her tenure. We then incorporate her coach-
ing experience in the United States to separately evaluate her influence on
team performance in both countries. Similarly, we apply the same method-
ology to Béla Károlyi and Jon Urbanchek. For Béla Károlyi, we examine
his coaching records in Romania and the United States gymnastics teams,
conducting cross-country and longitudinal comparisons. For Jon Urbanchek,
we analyze his tenure and departure from the USA synchronized swimming
team, comparing performance metrics before, during, and after his coach-
ing period. Considering the constraints imposed by athlete nationality, we
utilized only the historical medal data of specific countries rather than data
from all countries when conducting the DID analysis. The parallel trends
assumption in our model allows us to use DID to estimate the magnitude of
the “great coach” effect.

In the placebo test for the DID model, we examined two dimensions:
Time Dimension: Select a time period prior to the coach’s influence and

assume the effect had already occurred during that period, testing whether
a significant effect is observed.

Group Dimension: Choose teams that were not affected by the coach
and assume they were virtually influenced, testing whether a significant
change can be detected.

Based on our test results, the estimated 𝛽 is not significant, indicating
that the model inference is robust and the DID results are credible.

5 Model Solving

5.1 Medal Prediction

Using the trained Random Forest Model, the number of gold medals and the
overall medal rankings for the 2028 Summer Olympics in Los Angeles, USA,
are predicted. The results are presented in Table 2.
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Table 2: Los Angeles Olympics (2028, Predicted) Final Medal Table and
Historical Sessions

NOC Rank 𝐺𝑜𝑙𝑑∗2028 𝑆𝑖𝑙𝑣𝑒𝑟∗2028 𝐵𝑙𝑜𝑛𝑧𝑒∗2028 𝑇𝑜𝑡𝑎𝑙∗2028 𝑇𝑜𝑡𝑎𝑙2024 𝑇𝑜𝑡𝑎𝑙2020 𝑇𝑜𝑡𝑎𝑙2016

USA 1 55 43 46 144 126 113 121

CHN 2 44 30 32 106 91 89 70

GBR 3 27 29 30 86 65 64 67

JPN 4 25 29 29 83 45 58 41

AUS 5 19 33 12 64 53 46 29

ITA 6 12 10 22 44 40 40 28

FRA 7 10 20 13 43 64 33 42

GER 8 15 10 16 41 33 37 42

Based on the comparison of the 2028 data with the medal counts from the
previous three Olympic Games, the medal tally shows a significant increase
for most countries. However, France (FRA) exhibits a decreasing trend com-
pared to the 2024 Olympics.

We observe that historical factors such as wars have contributed to the
rise and fall of nations in the Olympics. We have compiled statistics on how
many countries won their first medals in each Olympic Games and the total
number of different types of medals they achieved.

From the Table 2, we can see that the United States is predicted to win
the most medals in the 2028 Olympics, with a total of 144 medals, including
55 gold, 43 silver, and 46 bronze. China is expected to rank second with 106
medals, followed by Great Britain, Japan, and Australia. In terms of growth,
the United States, as the host country, is expected to increase its total medal
count by 18 compared to the 2024 Olympics. However, the last host country,
France, is expected to experience a decrease in total medals by 21 compared
to the 2024 Olympics. It is an obvious host effect, which will be discussed in
Section 5.3.

Based on the above data, we filtered the medal-winning records of coun-
tries after 1960, focusing on nations that did not win any medals between
1960 and 2024. Using the Random Forest method, we predicted the prob-
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ability of these countries winning at least one medal in the 2028 Olympics.
The results are presented in the Table 3.

Table 3: Probability of Winning Medals (Non-Medaling Countries)

NOC Prob(Total) Prob(Gold) Prob(Silver) Prob(Bronze)

DEN 81.82% 72.73% 90.91% 81.82%

RSA 75.76% 72.73% 81.82% 72.73%

CRO 60.61% 63.64% 54.55% 63.64%

SLO 60.61% 54.55% 63.64% 63.64%

NGR 45.45% 45.45% 45.45% 45.45%

POR 42.42% 45.45% 45.45% 36.36%

Also, in order to find out whether there is a strong correlation between
country and sport, we have calculated the Nation-Sport Interaction Scores
by the historical data sorted by the dataset offered.

The input data of the original Random Forest Model was modified by re-
placing individual athlete characteristics with sport-specific features as train-
ing and prediction inputs. To achieve this, we isolated different Nations and
Sports, generating a unique interaction ID (NSid). The final Score repre-
sents the absolute advantage of a nation in a specific sport. The results are
reported in the Table 4. A higher Score value indicates a greater proficiency
of the Nation in that particular sport.

5.2 Great Coach Effect

Outstanding coaches often have a significant impact on athletes. Generally,
since athletes can only represent their country based on their nationality in
the Olympics, it can be assumed that there will be little short-term change in
the athletes themselves. However, coaches are not constrained by nationality.

We selected the United States, China, and Romania as examples to study
the influence of renowned coaches, such as Lang Ping, Béla Károlyi, and Jon
Urbanchek, on the performance of their respective national teams.

To further assess the robustness of the estimated results, a placebo test
was conducted. This test compared the performance of different teams within
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Table 4: Nation-Sport Interaction Scores: Evaluating Proficiency in Olympic
Sports

NSid NOC Sport Score Rank

3486 SUI Aeronautics 100.00 1

1178 CHN Table Tennis 98.00 2

1542 ESP Basque Pelota 79.50 3

3487 GER Alpinism 70.50 4

2384 USA Basketball 64.03 5

625 CAN Breaking 58.33 6

1364 FRA Motorboating 57.14 7

4011 USA Fencing 54.17 8

4074 VEN Cycling BMX Freestyle 54.17 9

the same country and analyzed the data under the same DID framework.
Specifically, a difference analysis was performed on the performance of dif-
ferent teams during the same time period.

Lang Ping, who served as the head coach of the Chinese women’s volley-
ball team in 1995, resigned in 1998. She then coached the U.S. team from
2005 to 2008, leading them to win the gold medal in 2008. In 2013, she
returned to the Chinese team and successfully revived the long-struggling
squad, guiding them to another championship. From the regression results,
it can be seen that Lang Ping’s arrival in China increased the probability
of the Chinese team winning medals by a factor of 0.483. Meanwhile, her
coaching tenure with the USA team resulted in a 1.555-fold increase in the
likelihood of winning a gold medal. Béla Károlyi’s coaching career began
with Romania in 1976, and he later coached the USA starting in 1981. The
DID coefficients for these two periods were 0.442 and 0.529, both statistically
significant at the 99% confidence level. Jon served as the head coach of the
USA synchronized swimming team before their first participation in the 1984
Olympics. After leaving the national team in 2005, the performance of USA
synchronized swimming significantly declined, with the level of awards won
dropping by one and a half tiers.
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DID Result and Placebo Test

Figure 9: DID Result and Placebo Test

According to the results in Figure 9, the placebo test did not reveal
any significant DID coefficients, indicating that the influence of outstanding
coaches is indeed significant. The placebo test is passed, further validating
the reliability and robustness of the subsequent analysis results.

The significance of excellent coaches for the sports development of various
countries is self - evident. During Lang Ping’s tenure as the coach of the US
volleyball team, she not only increased the probability of winning gold medals
but also introduced advanced concepts and tactics, thus promoting the long
- term development of the sport. Jon designed a scientific training program
that enhanced the competitiveness of the US synchronized swimming team on
the international stage. Béla Károlyi, with a comprehensive training model,
contributed to the rise of US gymnastics.

In China, Lang Ping coached the women’s volleyball team twice, sig-
nificantly improving the team’s performance. Meanwhile, she established a
stable development system, which promoted the popularization of volleyball.
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Table 5: DID Regression Results

(1) (2) (3) (4) (5)
VARIABLES Medal Medal Medal Medal Medal

Trade -0.049 -0.357*** -0.112** -0.699*** 0.656***
(0.211) (0.118) (0.057) (0.069) (0.169)

Post 0.010 0.070*** 0.170*** 0.080*** 0.097***
(0.039) (0.0213) (0.028) (0.018) (0.0212)

Trade × Post 0.483* 1.555*** 0.442*** 0.529*** -1.480***
(0.271) (0.190) (0.072) (0.098) (0.344)

Constant 0.549*** 0.732*** 0.175*** 0.726*** 0.727***
(0.030) (0.010) (0.023) (0.013) (0.010)

Coach Lang Lang Béla Béla Jon
NOC CHN USA ROU USA USA

Observations 2,869 16,774 3,994 16,774 16,774
R-squared 0.002 0.005 0.034 0.008 0.002

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

In Romania, Károlyi used personalized training methods to elevate the level
of gymnastics and reserve talented athletes. Excellent coaches can improve
sports performance in the short term and drive the sustainable development
of sports in the long run.

5.3 Host Effect

What has ever been reffered as before, the host effect is a significant factor
that influences the performance of athletes and the medal of countries in the
Olympics. The host effect is a phenomenon in which the host country of the
Olympic Games achieves better results than usual. We attempt to use the
Random Forest Model to quantify the host effect and determine the extent
of this effect.

The flowchart for this part is shown in Figure 10. We selected data from
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countries that hosted the Olympic Games between 1960 and 2024. We trained
separate Random Forest Models using data from athletes in the countries that
hosted the Games in each respective year, as well as other relevant data. We
then used 1,000,000 randomly generated data sets to predict the outcomes
of the models.

     Data

Filiter Model Train Predict

     Same Random Data

Host = 0

Host = 1

RF 1

RF 2

Result 1

Result 2

Figure 10: Workflow of Estimating the Host Effect

The final prediction results indicate a significant decline for France and a
notable rise for the United States in 2028. A pronounced host country effect
is observed in the model results, warranting further investigation.

Data from 1960 onwards were filtered, retaining only countries that had
hosted the Olympics to prevent the overall national strength from influencing
the outcomes. The filtered data were then divided into two datasets for model
training: one with ( 𝐻𝑜𝑠𝑡𝑐,𝑦 = 1 ) and the other with ( 𝐻𝑜𝑠𝑡𝑐,𝑦 = 0 ).

Using the same randomly generated samples, we compared the models
and made predictions. The results demonstrate that, on average, the proba-
bility of winning for host countries is approximately 1.37 times that of non-
host countries. To validate this, we generated a new dataset containing one
million samples and produced the following Table 6.

Table 6: Descriptive Statistics (Model Comparison)

Count Mean Std Min Q1 Mid Q3 Max

Model (Host = 1) 1,000,000 27.45% 13.78% 13.06% 13.06% 14.35% 40.08% 42.33%

Model (Host = 0) 1,000,000 19.99% 8.41% 10.81% 10.81% 13.02% 25% 31.17%

Times - 1.37 - 1.21 1.21 1.10 1.60 1.36
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6 Model Comparison

6.1 Ordered Logit Regression Result

The Ordered Logit Regression (OLR) model results indicate that factors
such as whether it is the athlete’s first time participating in the Olympics,
whether the athlete’s country is the host country, and whether the country
has previously won medals in a particular sport have a significant impact on
the Olympic medal rank.

Specifically, the negative coefficient for first-time Olympic participation (-
0.2117) suggests that, compared to the baseline group, first-time participants
perform worse in terms of medal rank. In contrast, the country being the
host is positively correlated with higher medal ranks (0.7049), indicating that
athletes from the host country are more likely to achieve higher medal ranks.
The coefficient of 1.1686 for prior medal wins in the sport indicates that a
country’s previous success in a particular sport significantly increases the
likelihood of its athletes achieving higher medal ranks. This also provides
an explanation for the features fed into the Random Forest Model based on
their direction.

6.2 Significant Differences

While it offers an explanation for the direction of the Random Forest Model,
its performance does not match that of the Random Forest in terms of accu-
racy.

We utilized data from 2016 and earlier to fit both the Random Forest
Model and the OLR model, and subsequently validated the models using data
from 2020 and 2024. The performance evaluation of the models indicates that
the Random Forest Model achieved an accuracy of 81%, while the traditional
OLR model exhibited an accuracy of only 76%.

To assess the validity of the proportional odds assumption, several clas-
sical tests were performed, including the Wolfe-Gould test, Brant test, score
test, likelihood ratio test, and Wald test. The chi-square values for all tests
were significant, suggesting that the independent variables exert consistent
effects across the different categories of the dependent variable, thereby con-
firming the validity of the proportional odds assumption in the ordered prob-
ability regression model.

To clearly visualize the model’s difference, we plotted the confusion ma-
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Figure 11: Confusion Matrices (Model Comparison)

trix, as shown in Figure 11. The confusion matrix reveals that the OLR
model failed to predict any gold or silver medals. However, due to the large
number of actual outcomes being no medals, its accuracy appears inflated,
whereas in reality is not. In contrast, the Random Forest Model successfully
predicted medals across all categories, with its accuracy reflecting genuine
performance rather than inflated results. This further underscores the supe-
riority of our Random Forest Model in comparison.

7 Strengths and Improvements

7.1 Strengths

• Split-Based Data Segmentation: To facilitate the observation of
future data, we employ a split-based method for data segmentation.
Using random splitting, the dataset is divided into training and testing
sets. By comparing the model’s predicted results with the known data,
any observed deviation prompts a return to the training set for further
calibration. This iterative process allows for multiple validations of the
model, thereby enhancing the accuracy of the final predictions.

• Country-Specific Training: During the model training process, data
from different countries is separated, and independent models are trained
for each nation. This approach avoids the mixing of data across coun-
tries, ensuring more precise predictions while better capturing the unique
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characteristics of each country.

• Athlete Classification: We categorize athletes into two groups: new
athletes and those with sustained participation. This classification
takes into account factors such as the athlete’s competition experience
and age, which significantly affect their performance in competitions.
By incorporating these factors, the model can more accurately reflect
the dynamic realities of athlete performance.

7.2 Improvements

• The model exhibits a significant effect from the host country, which
can be further improved. For example, France, as the host for the 2024
Olympics, saw a notable decrease in medal counts when it was not
the host in 2028. Similarly, the United States experienced a marked
increase in medal counts after hosting in 2028.

• The variation in Olympic medal counts is influenced by various factors
such as GDP and national policies. However, due to constraints in the
scope of the research question and the available data, the model lacks
sufficient variables. Only data directly related to sports competitions
were used, which limits the generalizability of the results. Future im-
provements will involve adjusting the model parameters to account for
changes in policies and other relevant factors.

8 Conclusion

In this study, we first developed an improved Random Forest method to
address the first task. Our improved Random Forest Model offers several no-
table advantages. It employs a partition-based data segmentation approach
to divide the dataset into a training set and a test set, followed by iterative
calibration and validation. This process significantly enhances the accuracy
of our predictions. The country-specific training method, which trains inde-
pendent models for each country, effectively captures the unique character-
istics of different countries, avoids data mixing, and provides more precise
forecasts. Moreover, we classified athletes into continuing athletes and new
athletes, taking into account key factors such as competition experience and
age. This classification enriches the input features of the model, enabling it
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to more accurately reflect the dynamic nature of athletes’ performance and
ultimately contributing to more accurate medal-count predictions.

Compared with the traditional Ordered Logit Regression Model (OLR),
our Random Forest Model demonstrates clear superiority. In the model per-
formance evaluation, where data from 2016 and earlier were used for train-
ing and data from 2020 - 2024 were used for validation, the Random Forest
Model achieved an accuracy of 81%, outperforming the OLR model’s 76% ac-
curacy. The confusion matrix further shows that the Random Forest Model
can successfully predict medals in all categories, while the OLR model fails
to accurately predict gold and silver medals.

This study also employed the Difference in Differences (DID) model to
evaluate the impact of ”great coaches.” By using data on the coaching ex-
periences of renowned coaches such as Lang Ping, Béla Károlyi, and Jon
Urbanchek, we were able to estimate the influence of these coaches on a
country’s medal counts in specific sports. The results of the DID regression
analysis and the passing of the placebo test confirm the significant impact of
excellent coaches on sports performance. This not only provides valuable in-
sights into the role of coaches in sports development but also offers practical
guidance for countries to improve their sports performance through coaching
strategies.

Furthermore, our model identified and verified the host effect. Based on
the data we processed, the probability of the host country winning medals
is significantly higher, with the average winning probability being approxi-
mately 1.37 times that of non-host countries. This finding not only validates
the importance of considering the host factor in medal-count predictions but
also provides a reference for future Olympic organizers and participating
countries. In summary, our model has achieved favorable results in pre-
dicting Olympic medal counts and analyzing influencing factors. It can offer
valuable guidance for national Olympic committees in formulating strategies,
allocating resources, and predicting competition outcomes.
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